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Abstract: Arsenic is a key environmental toxicant having significant impacts on human health.
Millions of people in developing countries such as Bangladesh, Mexico, Taiwan, and India are
affected by arsenic contamination through groundwater. Environmental contamination of arsenic
leads to leads to various types of cancers, coronary and neurological ailments in human. There are
several sources of arsenic exposure such as drinking water, diet, wood preservatives, smoking, air
and cosmetics, while, drinking water is the most explored route. Inorganic arsenic exhibits higher
levels of toxicity compared its organic forms. Exposure to inorganic arsenic is known to cause
major neurological effects such as cytotoxicity, chromosomal aberration, damage to cellular DNA
and genotoxicity. On the other hand, long-term exposure to arsenic may cause neurobehavioral
effects in the juvenile stage, which may have detrimental effects in the later stages of life. Thus, it
is important to understand the toxicology and underlying molecular mechanism of arsenic which
will help to mitigate its detrimental effects. The present review focuses on the epidemiology, and the
toxic mechanisms responsible for arsenic induced neurobehavioral diseases, including strategies for
its management from water, community and household premises. The review also provides a critical
analysis of epigenetic and transgenerational modifications, mitochondrial oxidative stress, molecular
mechanisms of arsenic-induced oxidative stress, and neuronal dysfunction.

Keywords: arsenic; environmental toxicity; myelination; neurotoxicity

1. Introduction

Arsenic is recognized as a primary environmental pollutant that has substantial health
impacts on human and other species. It is also ranked first in the priority list of Agency for
Toxic Substances and Disease Registry (ASTDR), USA till 2020 (https://www.atsdr.cdc.
gov/spl/index.html, accessed on 17 July 2021) [1]. Arsenic is a ubiquitous environmental
contaminant widely distributed in the surrounding environment. Further spread of Arsenic
is promoted through anthropological actions including smelting, burning of fossil fuel,
and use in pesticide production responsible for its increased levels in earth, water, air,
agricultural and aquatic food [2,3]. Increased arsenic levels in the environment have thus
become a serious human health concern is widely distributed globally [4]. Developing
countries such as Bangladesh, India, Mexico, and Taiwan are highly impacted by arsenic
contamination in groundwater [4–6]. Epidemiological studies suggest that arsenic and
its related compounds are responsible for causing various types of cancers, coronary
and neurological ailments [7]. Arsenic toxicity is influenced by its chemical speciation,
as inorganic arsenic exhibits a higher level of toxicity compared to organo-arsenicals.
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Inorganic arsenic is a potent carcinogen and causes malignancies in lungs, kidneys, skin,
urinary bladder, and liver [8]. Chronic arsenic exposure via drinking water is one of
the major factors for the greater risk of noncancerous ailments such as pigmentation,
hyperkeratosis, cardiovascular disorders, hypertension, neurological, liver and kidney
disorders, and diabetes [9]. Increased arsenic in the environment also impacts the health
of aquatic species [10]. Arsenic present in sediments is biologically available through diet
to benthic fish [10]. Dissolved arsenic levels in aquatic ecosystems in many developing
countries have been reported to be higher than the permissible limit (10 µg/L) set by World
Health Organization (WHO). This might be responsible for the disturbed physiological
functions such as ion regulation, gene expression, enzyme and immune functions, growth
and repair of tissue matrix, reproduction, and development [10]. Several studies in rodents,
fish and invertebrates suggest that increased arsenic accumulation may alter the normal
physiological function of organisms by directly or indirectly promoting the initiation of
disease [10–14]. Arsenic is a strong reducing agent and interacts with other molecules
such as sulphur, chloride and oxygen. It’s interactions with carbon containing molecules
results in the formation of organic arsenic [15]. In addition, binding of arsenic with certain
metals and charged ions such as Ca or Mg promotes the adsorption of As(V) in the solid
particulate phases [16]. In addition, the effects of arsenic and its critical interactions might
acknowledge new platforms of recent understanding on the diverse activities. Thus, the
complete understanding of pathological effects and molecular mechanism of arsenic are
crucial to mitigate its harmful effects on various species health.

Briefly, frequent monitoring of arsenic levels and associated health effects in various
organisms provides insights into the overall health and also acts as a guard for prospective
effects on the food chain [17]. Studies have shown severe impacts of arsenic on learning,
memory and cognitive deficiencies in animals, suggesting brain to be a vital target for
arsenic-induced toxicity [18]. Various inorganic and organic arsenicals appeared to accumu-
late in different areas of brain [19]. Arsenic easily crosses blood–brain barrier which further
potentiates its accumulation in different brain regions leading to various neurological dis-
orders [20]. Arsenic causes detrimental impacts on morphology and physiological changes
in the brain cells. The brain is susceptible to oxidative stress because of its high energy
requirement, and arsenic exposure causes oxidative stress damage via reduced antioxidant
enzymes in the brain [21]. In fact, increased oxidative stress is a major mechanism of
arsenic-induced neurotoxicity [22]. In this review article, we focus on the various toxic
mechanisms by which arsenic induces neurobehavioral diseases. In addition, we discuss
recent advances in understanding arsenic neurotoxicity, including the role of epigenetic
modulations, mitochondrial oxidative stress, and neuronal dysfunction.

2. Means of Human Arsenic Exposure

Arsenic is a metalloid, one of the most ubiquitous environmental pollutants, and
occurs naturally in the groundwater level with reported cancerous and noncancerous
health impacts [23,24]. Arsenic is highly toxic in its inorganic form, and widespread arsenic
contamination of Bangladesh tube well water is an example of chronic inorganic arsenic
exposure [25]. Chronic exposure to arsenic poisoning is also known as arsenicosis, while.
skin abrasions and skin melanoma are the most characteristic consequences [26]. Most of
the effects of chronic exposure depend on the level and duration of exposure and include
peripheral neuropathy, gastrointestinal symptoms, diabetes, cardiovascular diseases and
developmental toxicity. Organic arsenic forms that are present in seafood are less harmful
compared to inorganic arsenic as they are rapidly eliminated from the body [27]. Thus,
the abundant arsenic presence in the earth’s crust requires scientific communities to work
on its regulation and safe management strategies. Some of these strategies are discussed
below in brief.
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2.1. Drinking Water

The major resource for drinking water is groundwater, and the elevated concentra-
tions of arsenic in ground water has been correlated with numerous adverse human health
impacts [28,29]. Initially, WHO recommended the maximum acceptable arsenic concen-
tration in drinking water to be 50 µg/L, but later revised it to 10 µg/L up to 1992 [30,31].
Contamination of groundwater with inorganic arsenic is identified to be the primary route
for human exposure, and eventually responsible for various health effects which were
reported in Bangladesh, Vietnam, China, Taiwan, Argentina, and Canada [32–38].

2.2. Diet

Intake of arsenic through contaminated food is another major source of chronic ar-
senic exposure in humans, mediated by agricultural crops being cultivated using arsenic-
contaminated groundwater. Previous research has shown that polluted groundwater used
to grow crops for human consumption could be a major source of arsenic ingestion [39]. A
similar study found that vegetables imported to the UK from Bangladesh had 2–100 fold
higher arsenic concentrations than vegetables farmed in North America and UK, although
arsenic species were not reported [40]. In another report, arsenobetaine and arsenosugars
were detected in crustaceans and seaweed respectively [41].

2.3. Industrialized and Wood Preservatives

Arsenic is extensively used in the industry for production of antifungal wood preser-
vatives, which can be the source of contamination for soil. Ignition of well-conserved
woods (pressure treated with heavy metals) were discovered to be a source of arsenic con-
tamination [42]. As stated by the ASTDR, even though application of arsenic-containing
wood preservatives has been prohibited for several household uses, it is still being used
in industries. The US Environmental Protection Agency (US-EPA) in 2008 drafted Rereg-
istration Eligibility Decision Documents (REDs) to protect exposed workers from arsenic
effects. Recently, the harmful effects of chromated arsenicals in response to public health
were reviewed by the EPA and special attention was been given to rationalize its use in
order to mitigate associated risks [43,44]. Arsenic is also used in pharmaceuticals and glass
industries for the production of leather preservatives, pigments, antifouling paints, and
poisonous baits. Some arsenic-containing composites are also utilized in the production
of optics and microelectronics [45]. Sodium arsenite has frequently been applied as a
herbicide and nonselective soil sterilant [46].

2.4. Smoking

The literature suggests that smokers have a decreased ability to methylate ingested
arsenic, as smoking causes increased percentage MMA (mono-methyl arsenic) and lowers
percentage DMA (dimethyl arsenic) and the secondary methylation index compared to
nonsmokers [47]. It is reported that elevated urinary excretion of arsenic and MMA are
found in smokers compared to nonsmokers [48]. In another study, arsenic exposure through
cigarette smoking and drinking water resulted in a synergistic toxic effect [49]. Smoking
has also been associated with a higher risk of bladder cancer. A study from the USA
revealed that smokers exposed to elevated concentrations of arsenic in drinking water
(200 µg/L), had a greater hazard of developing urothelial carcinoma than those who were
exposed only through smoke [50,51].

2.5. Air

Arsenic in air mainly exists as particulate matter and is usually a combination of
arsenite and arsenate, with a minor amount of organic arsenic. Methylated arsenic is
present in minor amounts in air, whereas inorganic arsenic as trivalent and pentavalent
arsenic are the major components [52]. Inhalation of over 10 ppm is lethal [53], though
the exposure of arsenic through air is low at between 0.5 × 10−3 to 30 × 10−3 µg/m3 [54].
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The US Environmental Protection Agency (EPA) has projected that around 40 × 10−3 to
90 × 10−3 µg of arsenic is inhaled by humans per day [55,56].

2.6. Cosmetics

Cosmetics are another potential source of arsenic exposure to humans. Assessment
of dermal absorption of drugs depends on many factors, and currently there are no stan-
dards available for impurities testing. Few nations have determined the concentrations of
toxic metal and metalloids, including arsenic, in cosmetic products [57,58]. The available
information documents that several sources exist regarding the toxicity of metals through
cosmetics. Lucia Atz et al. 2009 determined trace elements levels of cadmium, chromium,
copper, and arsenic in cosmetic products like eye shadow and lipsticks using atomic ab-
sorption spectroscopy following an acid digestion method. They reported a maximum
concentration of 11.1 mg As/kg arsenic in eye shadow [59,60].

3. Metabolic Pathway of Arsenic

Scientific studies indicate that inorganic arsenic methylation was incomplete, and
urinary metabolite excretion varied from person to person, though arsenic exposure was
same in all the populations [61]. Inorganic arsenic is associated with toxicity and is reduced
from As(V) state to As(III) by arsenate reductase enzyme. The generated trivalent species
are highly active and toxic [62]. Arsenic is primarily metabolized and detoxified through
oxidative methylation in the liver in the presence of methyl donor S-adenosylmethionine
(SAM). The co-factor used is glutathione (GSH) with arsenic methyltrasferase resulting
in the production of monomethylarsonic acid and dimethyl arsenic acid which are finally
excreted through urine (Figure 1) [63].
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Figure 1. Metabolic pathway of inorganic arsenic demonstrating the reduction of arsenate to arsen-
ite with the enzyme arsenate reductase mediated by glutathione (GSH), which further undergoes
oxidative methylation through the enzyme arsenite methyltranferase mediated by S-adenosyl me-
thionine, with conversion to MMA and DMA. Finally, all the metabolites are excreted through urine,
among which DMA is the major metabolite (60–80%). (As- arsenic, DMA-dimethyl arsenic acid,
MMA-monomethyl arsenic acid, GSH-glutathione).

As discussed above, the toxic potential of arsenic primarily depends on the form of
arsenic in the body. Arsenic initially absorbed through various routes enters the blood-
stream and is taken up by red blood cells (RBC), white blood cells (WBC), and other cells.
Arsenate, on the other hand, is reduced to arsenite and is subsequently methylated to
monomethyl arsonate (MMA), and dimethyl arsenate (DMA) [64]. Reduction of arsenate to
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arsenite is essential before methylation and requires glutathione (GSH) and methyl group
transferase S-adenosyl methionine [65,66]. It is important to note that the absorbed form
of arsenic depends on the nature of arsenic because all the absorbed arsenic is not in the
pentavalent form. The main urinary metabolite found in urinary arsenic is DMA (60–80%).
Even though methylation is the most important pathway for arsenic detoxification, its
effectiveness in humans seems to decline when exposed to higher doses (Figure 1).

4. Neuronal Effects of Arsenic

Neuronal alterations due to metals/metalloids are well documented. Arsenic exposure
is known to cause various neurological disorders through diverse molecular mechanisms
such as cytotoxicity, increased reactive oxygen species (ROS), chromosomal aberrations
and cellular DNA damage. These genotoxic effects are the major cause of degenerative
changes in neurological systems [67,68]. Various epidemiological studies have revealed
a correlation between increased arsenic in drinking water and neurological behavioral
disorders such as decreased locomotor activity, impaired cognitive functions, and prenatal
complications. Arsenic easily crosses the blood-brain barrier and can accumulate in various
parts of the brain, such as the striatum and hippocampus, which further potentiates arsenic
toxicity and tissue injury [69,70].

There is much evidence for the neurological impacts of arsenic in animal models.
However, very few epidemiological reports are available on the influence of arsenic on
adult mental health and cognitive performance [71,72]. Epidemiological and toxicological
studies indicate that arsenic is a developmental neurotoxicant and is responsible for induc-
ing intellectual and cognitive disabilities in humans [73]. Studies conducted in Bangladesh,
India, Mexico, and Taiwan have indicated that chronic exposure to even very low levels of
arsenic (<10 µg/L) reduced IQ and memory performance in exposed children [72]. The
experimental research carried on animals has expanded our understanding of the outcomes
of new and potential neurotoxic components. Arsenic can induce neurotoxic effects by
altering the levels of neurotransmitters such as serotonin, dopamine and norepinephrine in
the brain [74,75]. The detrimental effects of arsenic are largely influenced in the develop-
mental stages. Exposure to arsenic could perturbate neurological complications, severely
affecting memory and learning, anxiety and mood instability [76,77]. Several mechanisms
correlate arsenic toxicity with reduced synaptic signaling, plasticity and neurogenesis [78].

The literature includes possible mechanisms involved in the impaired cognitive per-
formance in adults with arsenic exposure. Peripheral nerve neuropathy, altered sensory
function and reduced conduction velocity were observed in humans who were subjected
to elevated levels of inorganic arsenic [79,80]. Even a single dose of 50 ppb inorganic
arsenic in water in adult mice led to peripheral neuropathy, which resulted in the reduction
of motor conduction velocity and abnormalities in action potentials in sensory nerves in
offspring [81]. It has also been observed that arsenic exposure caused loss of neurofilaments
and decreased expression of fibroblast proteins in rat sciatic nerves [82]. Arsenic-induced
oxidative stress and demyelination, and morphological impacts on peripheral neurons
suggest that these impacts further impair the transmission of signal transduction from the
peripheral nervous system to the CNS leading to detrimental impacts on mental health [80].

The mechanisms linking arsenic exposure to neurodegeneration are complex, and
our understanding of these mechanisms is continuously evolving [83]. Previous studies
have suggested that arsenic might cause neurodegeneration through various mechanisms,
the most studied including oxidative stress, inflammation, and mitochondrial dysfunc-
tion [84,85]. In a case control study, increased urinary arsenic excretion in patients was
observed in correlation with enhanced risk of progression of Alzheimer’s disease (AD).
AD is a progressive neurological disorder characterized by the formation of neurofibrillary
tangles and β-amyloid (Aβ) plaques [86]. Arsenic-induced dementia and vascular injury
were also reported in in-vivo studies [87]. Chronic exposure to arsenic in rats caused
behavioral deficits which were associated with high levels of amyloid-β, increased ad-
vanced glycation-end products and β-secretase (BACE-1) activity in the brain [83]. Arsenic
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exacerbated amyloid-β and phosphorylated tau in transgenic AD rodent models, which
were mediated through bioenergetic disfunction and modified redox metabolism [83].
Interestingly, arsenic reportedly induced behavioral deficits and neurodegeneration via
increased production of the Aβ(1–42), amyloid precursor protein (APP) and BACE-1 [88].
These proamyloidogenic effects of arsenic were synergized when coexposed with other
heavy metals, and these effects were mainly mediated by oxidative damage and neuroin-
flammation of brain tissues [89]. Arsenic increases proinflammatory cytokines levels in
astrocytes, which are a subtype of glial cell in the central nervous system and mediate
brain homeostasis and neuronal metabolism. Any imbalances/insults in glial cells lead
to increased levels of amyloid precursor protein [90]. Arsenic toxicity may also synergize
with DA (dopamine) to cause neurotoxicity, and cause α-synuclein aggregation, which is a
hallmark of Parkinson’s disease [91].

Perinatal exposure of adult mice to 50 µg/L arsenic via drinking water was found to
cause depression and depression-like behavior in the offspring [92]. The study also reported
elevated serum corticosterone levels and subsequent reduction of the whole hippocampal
corticotrophin-releasing factor (CRFR1), increased dorsal hippocampal serotonin 5HT1A
receptor binding and receptor-effector coupling. These observations imply that perinatal
exposure to arsenic may interrupt the regulatory connections between the hypothalamic-
pituitary-adrenal (HPA) axis and the serotonergic system in the dorsal hippocampus.
These changes significantly induced depressive behavior in offspring [75,92]. Several
rodent studies indicated that chronic exposure to low and moderate levels of arsenic could
significantly alter the levels of NE, DA, and 5-HT in the brain; such effects have often
been reported to occur in a sex-specific manner [70–72,74,75,79,80,83,89,91,93–101]. Arsenic
toxicity is more common in males (53.7%) than females (46.3%). It also causes fatal effects
on the male reproductive organs and development [102]. However, low levels of arsenic
(~1.321 mg) affect pregnant females and their offspring. The newborns from the arsenic
exposed females showed low socio economical communications and malnutrition with an
effect on growth and development [103]. Collectively, this evidence suggests that pregnant
women are at a higher risk to arsenic.

To date, the neurobehavioral implications of chronic arsenic exposure have not been
investigated fully in any species. Dipp et al. [95], chronically exposed different life stages of
zebrafish (larval, juvenile and adult) to waterborne arsenic (50–500 µg/L) and subsequently
examined motor function, social and cognitive behaviors, and anxiety-like behaviors. They
reported altered motor function in embryos and adults at 500 µg/L arsenic exposure, and
an increase in anxiety behavior in juveniles and adults at the same exposure. Associative
learning behaviors were also impacted at 500 µg/L exposure, but only in adults [95]. The
major potential mechanism of arsenic neurotoxicity could be oxidative stress. When adult
zebrafish were chronically exposed to arsenic trioxide (50 µg/L for 90 D), upregulation of
catalase (Cat), glutathione peroxidase (Gpx1), copper/zinc superoxide dismutase (SOD1),
and manganese superoxide dismutase (SOD2) were recorded in the brain. In addition,
mitochondrial cytochrome c oxidase1 (Cox1) and B-cell lymphoma 2 (Bcl2) were also
upregulated, indicating the initiation of apoptosis in brain cells [104]. Even low levels of
arsenic at 10 µg/L could cause long-term memory loss in zebrafish when tested with a
one-trial inhibitory avoidance test. This is a behavioral task aimed at evaluating learning
and memory mechanisms currently available to zebrafish, and is associated with increased
protein oxidation in the brain [105].

4.1. Neurotransmitter Mediated Impacts of Arsenic

There are several neurotransmitters responsible for the communication between
cells within the brain. Arsenic has neurotoxic effects on these neurotransmitters and
inducible effects on dopamine (DA) and serotonin (5-HT) levels due to regulation of
norepinephrine (NE) levels [106]. Arsenic also alters the levels of GABA, glutamate and
other biogenic amine levels, as well as biogenic amines (5-HT, NE and DA) and nitric
oxide [107]. Nagaraja et al. [108] reported that inorganic arsenic consumption decreased
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acetylcholinesterase activity, which helps in metabolism of acetylcholine in rodents [108].
Poor outcomes in learning and memory could be mechanistically linked with altered
levels of neurotransmitter release [109]. Other research groups have identified that the
neurotoxic effects of arsenic are mediated via reduced glutamate levels and mGluR5 ex-
pression in the hippocampus [110]. In addition, exposure to arsenic in rats reduced the
activity of acetylcholinesterase (ACHE) in the central compartments of the brain [111].
Similarly, other studies evaluated the reduced expression of homovanillic acid (HVA) and
3,4-dihydroxyphenylacetic acid (DOPAC) in mice treated with arsenic [112].

Another potential mechanism of arsenic-induced neurobehavioral alterations could
be mediated by the transcriptional regulation of ectonucleotidases. The uncoupling of ox-
idative phosphorylation is linked with the formation of arsenate and ADP complexes [113].
Mitochondrial formation of ATP from ADP and PO4 provide cells with energy. The
formation of ADP + arsenic can occur faster than ATP formation, thereby decoupling
ATP production. Significant decrease in the mRNA expression of NTPDase members
(entpd2_mg, entpd2_mq) and Ecto-5′-nucleotidase, eventually results in a reduction of
ATP/ADP and AMP hydrolysis [114]. Arsenic-mediated alterations in the activities and
mRNA levels of ectonucleotidases might be responsible for decreased adenosine levels,
which could alter movement and anxiety reactions in zebrafish [114]. Arsenic could also
act on the cholinergic system by interacting with thiol (-SH) groups involved in the uptake
of choline and disulfide group of acetylcholinesterase [111,115,116]. Moreover, rodents
exposed to arsenic showed a decrease in glutamic acid decarboxylase (GAD) expression
in some areas of the brain, while glutamate (Glu) levels were increased. Increased gluta-
mate can be excitotoxic and cause neuronal death. As-mediated disruption of cholinergic,
GABAergic, and glutamatergic systems can lead to alteration in memory consolidation and
retrieval [117,118]. These mechanisms could also lead to neuronal loss in the neurotrans-
mission pathways, and thereby cause cognitive deficits.

4.2. Neurodevelopmental Defects and the Effects of Aging

It has been shown that chronic exposure to arsenic may cause detrimental neurobehav-
ioral effects in the juvenile stage. Thus, consumption of arsenic unknowingly in childhood
may have detrimental effects in later stages of life [119]. Neuropathy and peripheral neu-
ropathy are common complications seen with arsenic toxicity. Neuropathy is a condition in
which sensory function is impacted upon chronic exposure to toxicants or metabolic disor-
ders [120]. A study in Mexico observed that urinary arsenic concentration was conversely
correlated with oral IQ (verbal intellectual ability) and memory. Long term memory, atten-
tion, and capability to understand speech may be influenced by chronic exposure to arsenic
in individuals with chronic malnutrition. Further, IQ of children can be decreased with
increased arsenic exposure [121,122]. Additionally, by evaluating the impacts of arsenic at
various life stages, studies found that early life stage exposure could lead to health impacts
in adults. Clinical observations are not very well understood and poor diagnosis may lead
to later complications, although as per current literature, impacts on adult life stages are
much more studied than early life or prenatal exposure impacts [123].

4.3. Neurobehavioral Effects of Aging in Animal Models

Spatial learning ability of arsenic-exposed rats revealed impairment of spatial memory
as concluded by inferior performance on hidden platform acquisition tests [124]. Another
study of prenatal arsenic exposure before 4 months of age showed that the arsenic-exposed
rats had increased errors in sensory information, and arsenic-exposed offspring had deficits
in spatial working memory and reactivity to novelty [125,126]. A dose-dependent decline
in body weight and brain weight were the result of arsenic exposure in young animals [127].
Another study reported that the levels of dopamine and serotonin in the brain increased
with a decrease in norepinephrine following exposure to arsenic [112].
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4.4. Neurobehavioral Effects of Aging in Humans

In infants, calamitous consequences have been associated with acute as well as chronic
exposure. The outcomes of toxicity in children have been explained in a meta-analysis
report. The meta-analysis performed in China showed that the mean IQ score of infants
exposed to arsenic was six points less than that of unexposed infants [128]. The study
also reported that the impact of arsenic toxicity depended on acute and chronic exposures.
Moreover, upon aging the effects were largely mediated via chronic exposure. This suggests
that low levels of arsenic in the early developmental stages, if neglected, might lead
to severe complications with increasing of age [73]. Another clinical study on females
aged 6 months demonstrated strong effects of arsenic on the neurodevelopment [129].
Further, emerging studies have shown that children up to 5 years of age are more prone to
intellectual deficits due to arsenic exposure [74,130,131]. Neurobehavioral effects were also
observed on chronic arsenic exposure in adolescents [119]. Adults who were exposed in
early stages to arsenic performed poorer in neurobehavioral subsets indicating that infantile
exposure to arsenic may affect behavioral development in the later stages of life. Studies
with the geriatric population showed that a low level of arsenic exposure is linked with
weaker cognition, decline in visuospatial skills, decline in language skills and information
processing speed, impairment in the ability to execute tasks, and diminished short term
memory [132]. Children exposed to arsenic through drinking water were found to have
poor performance in information processing speed, although their verbal skills were not
affected much [133,134]. Studies suggest that arsenic exposure through drinking water was
associated with decreased IQ scores in youngsters aged between 6–10 years [131].

5. Toxicological Pathways
5.1. Molecular Mechanisms of Arsenic-Induced Oxidative Stress

Numerous in-vitro and in-vivo studies reported that arsenic toxicity (Table 1) is
predominantly mediated by the induction of oxidative stress. ROS, majorly superoxide
anion radical and hydrogen peroxide, were shown to increase in various tissues follow-
ing exposure. Oxidative stress and inflammation are interconnected in a very complex
cycle in which ROS can trigger various transcription factors that eventually upregulate
the expression of prooxidative and antioxidative enzymes including the expression of
proinflammatory cytokines [135]. Furthermore, phagocytic leucocytes can be activated
and recruited to inflammatory sites and activate enzymes which can further potentiate
oxidative stress, leading to increased inflammation. Oxidative stress and inflammation are
key factors accountable for chronic diseases as shown below (Figure 2).

Several reports suggest that oxidative stress mediates arsenic-induced inflammation
and neuronal dysfunction in rodent models. In a few in-vitro cell line models, arsen-
ite was found to activate pr-inflammatory factor, NF-κB, mediated through oxidative
stress [140]. Earlier studies reported increased lipid peroxidation, oxidative stress, protein
carbonylation, decreased glutathione and increased glutathione disulfide and reduced
antioxidant enzyme activity in various tissues [141]. When cultured microglia and astro-
cytes from rat hippocampus were exposed to arsenic, it was found to elevate expression
of pro-inflammatory cytokines such as IL-1β, IL-6, IFNγ, and TNFα. Increased levels of
these inflammatory markers mediate neuronal toxicity. Chronic exposure to arsenic also
stimulates inducible NOS in various brain regions leading to nitrosative stress [142–145].

One of the primary sites for arsenic-induced oxidative stress is the mitochondrion.
Exposure to arsenic primarily causes structural alterations in mitochondrial integrity which
leads to a fast deterioration of mitochondrial membrane potential [146]. Altered membrane
potential may cause uncontrolled formation of ROS. Further, depleting membrane integrity
activates a downstream cascade of radical species causing a decline in cellular oxidative
stress defense molecules such as GSH [147]. However, complete molecular mechanisms
of arsenic toxicity are not fully understood; nonetheless, several studies showed that
arsenic exposure enhances the production of ROS. Current literature strongly suggests that
induction of ROS is the primary mechanism of arsenic-induced toxicity [148,149].
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Table 1. In-vitro and in-vivo studies demonstrating mechanisms of arsenic neurotoxicity.

Arsenic Species Exposure
Duration Pathological Mechanisms Toxic Outcome Ref.

Sodium
arsenite Rat 4 months

Increased APP (amyloid precursor
protein) and RAGE 9, also increased

enzymatic activity of
BACE1 (β-secretase).

Neurodegeneration
disorders associated with

amyloid accumulation.
[2]

Sodium
arsenite Rat 1 month

Increased lipid peroxidation and
decrease in nerve conduction velocity.
myelin thickness, area, and perimeter

of axons.

Impaired central
nervous system. [3]

Sodium
arsenite Rat 9 h Absence of neurofilament and fibroblast

Proteins.
Altered

cytoskeletal composition [4]

Sodium
arsenite Rat 28-days

Reduction in superoxide dismutase-2 and
Catalase action in hippocampus, striatum

and cortex.

Altered locomotor activity
and grip strength. [5]

Sodium
arsenite Rat 4 months

Elevated oxidative stress, lipid
peroxidation and reduced glutathione

levels in brain mitochondria.

Increased oxidative stress
and mitochondrial damage. [39]

Sodium
arsenite Rat 28-days Increased oxidative stress. Decrease in

superoxide dismutase-2 activity.
Increased apoptosis in

brain cells. [7]

Sodium
arsenite Rat 10-weeks

Decrease in antioxidative defense
mechanisms (GPx, GST, MnSOD, CAT

and GR), enhanced LPO observed in the
mitochondria at cerebral cortex,
cerebellum and hippocampus.

Significant impact on
behavioral functions like
total locomotor activity,

open field behavior,
exploratory behavior and

grip strength.

[136]

Sodium
arsenite Rat 28-days

Increased oxidative stress in frontal
cortex and hippocampus. Increased

levels of Nrf2 and HO-1 proteins.

Demise of myelin sheath in
neurons and imprecise

cristae in the mitochondria
both hippocampal and
frontal cortex regions.

Cholinergic
deficits detected.

[137]

Sodium
arsenite Rat 3 months

Biochemical and molecular modifications
via inducing oxidative stress and

dysfunction of mitochondria.

Mitochondrial decreasing
complexes activity and
functional impairment.

[31]

Sodium
arsenite Rat 3 months Reduced NR2A expression in

the hippocampus. Impaired memory. [10]

Sodium
arsenite Rat 3 months mGluR5 mRNA and protein expression

in hippocampus and cortex.
Learning and memory

ability declined. [11]

Sodium
arsenite Rat 30 days

Lowered expression of NMDAR NR2B
subunit and EAAC1 in the

brain (hippocampus).

Spatial
memory impairment. [12]

Arsenic
trioxide Mice 45 days

Significant raise in lipid peroxidation,
glycogen in cerebral hemisphere

and cerebellum.
Neurotoxic effects. [13]

Arsenic
trioxide Mice 60 days

Reduction of Sdha expression and
activity in brain, mitochondrial

respiratory chain genes downregulation.

Neurodegeneration
disorders. [14]

Arsenic
trioxide

T98G and
A172 cells 6, 8 and 24 h Aggregated mitochondria and

MMP dissipation. Induced apoptosis. [138]
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Table 1. Cont.

Arsenic Species Exposure
Duration Pathological Mechanisms Toxic Outcome Ref.

Arsenic
trioxide SY-5Y cells 24, 48 and

72 h Elevated intracellular calcium ions.
Increased occurrence of

apoptosis and
DNA damage.

[139]

Sodium
arsenite

Primary
astrocytes 24 h

Decreased mitochondrial membrane
permeability and decreased protein

expression of GLT-1, GS, and GLAST.

Inhibit glutamate
metabolism leading

to neurotoxicity.
[67]

Arsenic
trioxide

Rat
neuronal

cells
8 h Increased expression of calpain 1, cdk5,

p25 levels.
Induced neuronal

cell apoptosis. [69]

Arsenic
trioxide

Neuro-2a
cells 24 h

Oxidative stress damage decreased Nrf2
and thioredoxin expression.

Mitochondrial dysfunction, PARP
activation and caspase cascades,

caspase-3 activity.

Neuronal cell death. [70]

Sodium
arsenite

Bergmann
glial cells 24 h Increased EAAT1/GLAST activity and

decrease in GLU transport. Neuronal damage. [71]
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Figure 2. Pathway of inorganic arsenic-induced oxidative stress leading to proteostasis collapse by
disrupting the functions of Zinc finger proteins (ZnF) and redox sensitive stress response signaling,
which further leads to disrupted proteome stability and diminished protein degradative capacity.

Below is a list of various mechanisms by which arsenic is believed to induce cellular
oxidative stress:

(i.) Arsenic is known to induce changes in mitochondria, the mitochondrial membrane in-
tegrity and reduce membrane potential. These morphological alterations are primary
sites for the unregulated production of superoxide anion radicals causing a cascade of
downstream processes resulting in the formation of free radicals. The further build-up
of oxidative stress leads to failure of the oxidative defense system and results in toxic
manifestations [150].

(ii.) Mitochondrial complexes I and III produce O2− in the electron transport chain. Ar-
senic inhibits succinic dehydrogenase activity and promotes uncoupling of oxidative
phosphorylation with the output of O2−, which leads to a buildup of oxidative
stress [151].

(iii.) Arsenic may also generate ROS through NAD(P)H oxidase assisted processes. NAD(P)H
oxidase is a membrane-bound enzyme that produces superoxides by transferring
electrons from NAD(P)H within the cell around the membrane and combining those to
molecular oxygen to generate superoxide anions. It was demonstrated in mammalian
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endothelial cell culture that arsenic acts as an extracellular signal for the Ras proteins
(cdc42), which activate NAD(P)H oxidase to generate ROS [96].

(iv.) Arsenic can also generate ROS by affecting nitric oxide (NO) synthase enzyme system.
Nitric oxide synthase iso-enzymes are coupled to produce NO from L-arginine and
molecular oxygen without producing superoxides. Exposure to arsenic disrupts this
coupling produces ROS [97].

(v.) Metabolism of As(III) to As(V) in normal conditions results in the generation of
H2O2 [98].

(vi.) ROS are generated during the formation of intermediate arsine species such as
dimethylarsenic peroxyl radicals-metabolic by-products of dimethylarsinic acid [99].

(vii.) Methylated 3+ organic arsenicals react with sulfhydryl groups (-SH) in antioxidative
proteins and inhibit their activity, which results in a build-up of oxidative stress [100].

5.2. Mitochondrial Dysfunctions

A complex relationship occurs between mitochondria and functioning of other cellular
machinery affecting cell survival. Mitochondria are the powerhouses of the cell and have
important roles in oxidative phosphorylation and the electron transport chain. They are
also an additional major source of cellular free radicals [152]. When organisms are exposed
to xenobiotics such as arsenic, they cause disruption of mitochondrial function as illustrated
by inhibition of mitochondrial oxygen utilization, leading to disturbed membrane potential.
Decreases in ATP levels and the membrane potential cause a disparity in the energy
consumption and expenses [153].

Several previous studies have reported that arsenic-induced neurotoxicity is primarily
mediated through mitochondrial dysfunction and oxidative stress. In neuropathological
experiments, substantial attempts were made to investigate various molecular mechanisms
in mitochondrial dysfunction caused by arsenic [154]. Data indicate that arsenic can specif-
ically damage respiratory cycles in mitochondria, further leading to ROS production in
various cells including neurons [155]. Arsenic inhibits mitochondrial complex I, II and
IV activities in the brain after 12 weeks of exposure to arsenic. Arsenate can significantly
impact ATP production by competing with phosphate due to its structural similarities,
also known as arsenolysis, which occurs during the glycolytic pathway. Normally, in the
glycolytic pathway, 1,3-biphospho-D-glycerate is formed by enzymatic linking of phos-
phate to D-glyceraldehyde-3-phosphate. However, in the presence of arsenate, phosphate
is replaced with arsenate which leads to the formation anhydride 1-arsenato-3-phospho-
D-glycerate instead of traditional 1,3-biphospho-D-glycerate. The formed anhydride is
not very stable and further hydrolyzes to arsenate and 3-phospho-D-glycerate because
the As-O bond length is slightly (10%) higher than P-O bond, which makes it unstable.
These steps cause depletion of ATP production. ATP generation during glycolysis occurs
in presence of phosphate, but in the presence of arsenate this is impacted significantly.
Similarly, at the mitochondrial level, arsenolysis impacts ATP production at the oxida-
tive phosphorylation step. At the submitochondrial level in the presence of succinate,
Adenosine-5-diphosphate–arsenate is synthesized by utilizing adenosine-5-diphosphate
(ADP) and arsenate. Due to structural similarities with phosphate, in the presence of
arsenate instead of ATP, ADP–arsenate is produced. Unlike ATP, ADP–arsenate is not
stable and is further hydrolyzed causing significant depletion of ATP [156–159].

Mice exposed subchronically to a low level of arsenic trioxide, had inhibited SDH
(succinate dehydrogenase) activity and down-regulation of genes responsible for mitochon-
drial complex (II, IV and V) in neuronal cells. These mitochondrial complexes are encoded
by mitochondrial and nuclear DNA. Further studies are required to characterize molecular
pathways involved in altered gene expression on arsenic exposure [157,159,160]. Cellular
metabolism and calcium have key roles in activating the pathways leading to mitochondrial
membrane dysfunction. These two factors could provide further insights into the changes
of membrane integrity, lipid composition, abnormalities in cytoskeleton and production of
free radical ions. Limited scientific evidence for neurotoxic potential suggests a linkage
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between mitochondrial dysfunction and intracellular calcium levels. Arsenic-mediated
destruction of mitochondrial function may cause interrupted Ca2+ homeostasis by altering
endoplasmic reticulum buffering capability [136–138,161,162].

5.3. Demyelination and Myelination

Myelination plays an important role in the structural and functional maturation of
the brain throughout life [139,163]. It is an important factor for brain plasticity and sensi-
tive to several environmental factors, particularly in early stages of life [164]. Abnormal
myelination or loss of neuronal myelin cause severe loss of brain functions including motor
and sensory dysfunction [165]. Several studies concluded that environmental toxicants,
including arsenic, disrupt normal brain plasticity and cause impairment in cognitive func-
tion, although the arsenic effects were inconclusive on neuronal myelination [166]. Similar
observations strongly supported the above findings that loss of synaptic plasticity, learning
and demyelination result from arsenic exposure [78]. At a 24 h exposure level, arsenic was
shown to impairs axonal transport and the expression of neurofilaments in cell cultures
by disrupting the energy generation pathway, which triggered degenerative processes
leading to axonal damage and transection [167,168]. Nino et al. (2018) showed amyloid
precursor protein (APP) accumulation in arsenic-exposed rats, which indicated impaired
axonal transport and oxidative damage in neural membranes [83]. Hence it is evident that
axons as well as myelin are the targets for arsenic exposure. Rumbeiha et al. (2014) reported
that exposure to organic arsenicals (1000 ppm for 3–10 days or 250 ppm for 20–40 days)
in swine through diet caused demyelination of peripheral nerve fibers, ataxia and paral-
ysis of hindquarters [169]. A recent study reported demyelination of the cerebral cortex
and callosum is linked with arsenic exposure. In response to this, compensatory mecha-
nisms such as mitochondrial adaptive/stress responses are activated [170]. Donofrio et al.,
(1987) [171] reported that four patients with subacute polyradiculoneuropathy following ar-
senic poisoning experienced segmental demyelinating polyradiculoneuropathy involving
both humoral and cell-mediated immune mechanisms. This study also showed that acute
arsenic intoxication may cause Guillain-Barre syndrome. Acute inflammatory demyeli-
nating polyradiculoneuropathy (AIDP) is characterized by an immune-mediated attack
on myelin with infiltration of macrophages and lymphocytes with segmental stripping of
myelin as shown in Figure 3.

5.4. Effects on Nerve Conduction

There are several pathways described for arsenic-induced neurotoxicity (Figure 4).
Motor and sensory nerve conduction measures how fast an electrical impulse moves
through a nerve. During this nerve conduction velocity test, the particular nerve is stim-
ulated with electrode patches attached to the skin. This test is used to measure nerve
damage and dysfunction. Tseng et al. reported that chronic arsenic exposure led to slow
nerve conduction velocity in adolescents in Taiwan, and it was reported that a decrease in
nerve conduction velocity of the sural saphenous nerve (SAP), which supplies sensation
to the skin, can be used as an early marker for chronic arsenic neuropathy [172]. In this
study, people who were chronically exposed to arsenic showed a marked decrease in nerve
conduction (including the median saphenous nerve, ulnar compound muscle action poten-
tial, the ulnar saphenous nerve and the sural saphenous nerve). Taller subjects (>163 cm)
were reported to have decreased nerve conduction velocity than shorter subjects. Several
studies have reported that in symmetrical peripheral neuropathy, sensory nerves are more
sensitized than motor nerves, and the larger arm neurons are greatly affected [173]. Arsenic
exposure caused fragmentation and resorption of myelin on the distal portion of nerves,
with disintegration of axis cylinders and reduction in the number of myelin fibers. Several
other studies reported encephalopathy, and impairments of superior neurological functions
are linked to arsenic exposure [174,175].
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and decrease in SOD activity leading to increased oxidative stress causing neurotoxicity; (ii) increased
P38-MAPK, JNK3 pathway leading to increased apoptosis in cerebral neurons causing neurotoxicity;
(iii) Increased destabilization, disruption of cytoskeletal framework and axonal degeneration.

5.5. Overview of Epigenetical and Transgenerational Effects

Epigenetics is the research of factors influencing heritable changes without alterations
in the DNA sequence (phenotypic change without genotype change). Epigenetics is a highly
regulated mechanism that controls the expression of genes during the developmental phase
of an organism. Epigenetic mechanisms restructure chromatin and regulate the accessibility
of DNA to transcriptional factors based on physiological conditions, which eventually
leads to higher or lower expression of genes. Three different mechanisms, including
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histone modifications, noncoding RNAs (ncRNA) and DNA methylation are responsible
for gene silencing, and are believed to initiate and sustain epigenetic changes. Epigenetic
modifications are influenced by several factors such as age, lifestyle, environment, exposure
to pollutants, and pathological conditions of the organism [176].

Metabolism of arsenic consumes a significant amount of S-adenosylmethionine (SAM),
a primary methyl donor molecule in DNA methylation, which is a process mediated by
DNA methyl transferases (DNMTs) [176]. Abnormal DNA methylation patterns have been
reported in zebrafish embryos after acute exposure to arsenic [94]. Such abnormalities
in DNA methylation might take place due to the impacts of arsenic on SAM-dependent
methyltransferases, eventually changing histone and DNA methylation patterns [177].
Mirbahai et al., (2013) reported variation of global DNA methylation and disruption of
one-carbon metabolism, causing hepatic carcinogenicity in fish from As-contaminated
aquatic systems. These effects were linked to a decrease in choline and DNA methyltrans-
ferases activity through elevation of the DNA methyltransferases inhibitor S-adenosyl
homocysteine [178].

Post-translational alteration of histones restricts gene expression by modifications in
chromatin structure and, consequently, accessibility of DNA to transcription machinery.
Histone methylation inhibits gene expression, whereas demethylation triggers gene ex-
pression. Furthermore, histone acetylation increases gene expression by making genes
accessible for transcription machinery. Arsenic alters pyruvate dehydrogenase (PDH)
activity, which is predominantly responsible for the formation of acetyl-CoA through the
oxidation of pyruvate [179]. Acetyl-CoA is a crucial substrate for acetylation, thus arsenic
exposure will significantly impact histone acetylation. Prenatal exposure to arsenic in mice
causes hypo-acetylation at H3K9, which results in impaired episodic and spatial memory.
In contrast, developmental exposure to arsenic can cause gender-specific regulation of
H3K9 acetylation and methylation [180].

Current literature suggests that arsenic can cause epigenetic alterations by differ-
ent mechanisms and inhibiting the activity of DNMTs is one of the most notable among
them. DNMTs are responsible for catalyzing methyl group transfer from SAM onto the
C5′ position of cytosine at CpG dinucleotide of the promoter region of genes to produce
5-methylcytosine, which leads to hypermethylation of promoter regions and subsequent
gene silencing. Evidence also suggests that promoter demethylation, along with an inhi-
bition of DNMTs 1, 3a, and 3b, can cause altered gene expression. However, inhibition
of DNMT activity can lead to detrimental impacts on animals. Human epidemiological
studies confirm that exposure to arsenic via drinking water and food correlates signifi-
cantly with DNA hyper methylation. High arsenic levels in drinking water in various
regions of the world have been linked to global DNA hypomethylation accompanied by
epigenetic silencing of some critical genes, increasing the risks of cancer [176]. In addition,
experimental findings suggest that targeting epigenetic modifications might be a fruitful
approach to combat arsenic toxicity [181].

Recently, Valles et al. (2020) demonstrated the possible transgenerational effects of
arsenic in zebra fish. In this study, F0 embryos were directly exposed to waterborne
arsenic (50 and 500 ppb) for 150 days. Arsenic exposure to F0 generations altered motor
activity during the development phase and increased anxiety-like behaviors, which were
transmitted to the F2 generation. The most interesting observation was the reduction of
brain-derived neurotropic factor (BDNF) expression at mRNA levels in F0 and F2 adults,
and increase histone H3K4me3 methylation. Hypermethylation of the BDNF gene promoter
region observed in F0 and F2 generations was likely the reason for decreased expression
levels of the BDNF gene. BDNF is crucial for neurodevelopment, including synaptic
plasticity and regeneration, which are essential for cognition and memory. Changes in
BDNF levels could also lead to anxiety-like disorders. When behavior tests were performed
in the F2 generation of the above-mentioned study, fish demonstrated spontaneous tail
coiling and anxiety-like behavior, and a decrease in larval and adult motor activity and
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exploratory behavior [115]. This indicates that chronic exposure to arsenic can cause
trans-generational effects in zebra fish by epigenetic alterations.

5.6. Proteinopathy and Arsenic Toxicity

Proteinopathy is usually a term for diseases which are characterized by the production
of divergent conformers of a certain protein that are misfolded and aggregated, which
leads to dysfunctions. As a result of aging, the mechanism responsible for protein synthesis
is deregulated in the central nervous system (CNS). It has been reported that a low level
of arsenic exposure can upregulate the expression of APP, which, in turn, induces the
levels of Aβ, although it is still unknown whether this behavioral deficit is associated with
proteinopathy [182,183]. Molecular chaperones are a group of proteins that have functional
similarity and modulate the proteostasis network by sensing and proofreading misfolded
peptides to avoid aggregation [184]. It has been suggested that exposure to arsenic leads to
the disruption of the functions of molecular chaperones [185]. As a division of the cellular
stress response, inorganic arsenic (As3+) was found to induce HSP70 and small HSP’s
expression. Furthermore, chronic arsenite exposure was shown to cause overexpression of
heat-shock proteins via activation of DAF-16/FOXO transcription factor [186–188]. Arsenic
exposure may also alter protein clearance by disrupting the ubiquitin-proteasome system
(UPS) and axonal transport of the damaged proteins. Thus, chronic arsenic exposure results
in a progressive decrease in the capacity of protein refolding and clearance of aggregated
proteins; causing protein misfolding as depicted in Figure 5.
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6. Strategies for the Removal of Arsenic

Research has improved several treatment strategies for the removal of arsenic from
water, the community and household premises. Removal of pentavalent arsenic is more
effective compared to other forms. A two-step method is being approached to treat arsenic
contaminated, which includes pretreatment in which oxidation of As(III) to As(V) occurs
followed by a targeted method [189]. Conventional methods for removal of arsenic from
water involve adsorption, oxidation, precipitation, coagulation-flocculation, ion exchange,
electrocoagulation, membrane technologies, electrochemical arsenic remediation, phytore-
mediation and microbial remediation. Oxidation is considered to be a prerequisite process
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which converts As(III) into As(V), which is a more stable form; removal of this As(V)
takes place by adsorption/sedimentation/filtration or other techniques. Pettine et al. [190]
demonstrated that oxidation of As(III) by H2O2 is favorable in the presence of Fe2+ and Cu2+

as these cations exert a catalytic effect on oxidation of As(III). Moving to the coagulation
flocculation process, this was shown to be effective in the removal of arsenic from water. It
is a pH sensitive process, so whenever the pH is greater than 7.5 ferric chloride has better
performance for the removal of As(V) [191,192]. The presence of silicate and phosphate
affects the performance of the coagulation process [193]. Electrocoagulation is an emerging
technique that has been applied in the treatment of urban, potable and waste water with
heavy metals, and colored water [194,195]. Yilmaz et al. [196] reported that this process has
three times higher effectivity for removal of the contaminants. Among all these treatment
processes, adsorption may be widely used and is an economically feasible method. Many
studies reported that the adsorption process has shown effective performance towards
the removal of odor, color and different organic and inorganic contaminants from the
water [197–200]. Different types of adsorbents such as activated alumina, activated car-
bon, iron-based adsorbents and other miscellaneous adsorbents are used [201–204]. Ion
exchange is a physicochemical process in which ions are exchanged between resins and
feed water. This process is considered promising in the removal of arsenic. It has been
reported that by using ion exchange process it is possible to bring the effluent concentration
of arsenic to below 10 µg/L [205]. For field-based arsenic removal techniques such as
flocculent-disinfectant [206], hybrid ion exchange [207], solar oxidation [208], a bucket
treatment unit [209], and adsorption using activated laterite [210] were developed to pro-
vide arsenic-free water at the household level. Life cycle assessment is a tool for evaluating
the sustainability of water treatment by considering all technical, environmental, social and
economic aspects [211]. Accordingly, abundance of arsenic in groundwater, soil, crops and
ores is required to meet the urgency and demands of public health. However, as arsenic
is rapidly oxidized from As(III) to As(V), the nature of the toxic profile and risk also get
changed with forms. It is imperative to remove/target As(III) due to its hazardous effects
on human health. Several treatment parameters have been considered to assess how life
cycle assessment can be used as an effective tool to provide a reliable assessment of the
sustainability of targeted treatment systems.

7. Conclusions

Arsenic exposure affects millions of people globally, and epidemiological evidence
provides an imperative guide to arsenic risk assessment in food, water and air. Understand-
ing the neurotoxic impacts of arsenic is crucial, since exposure is a global public health
concern and arsenic levels in the environment are rising every year around the world due
to increased anthropogenic activity. The epidemiological evidence undeniably indicate that
arsenic significantly affects cognitive functions and intellectual ability during development.
Although several toxicological and epidemiological reports have demonstrated neurologi-
cal impacts of arsenic, the underlying mechanisms for such effects are poorly understood
and need to be explored further. Nonetheless, arsenic appears to be a strong neurotoxicant
that elicits its effects, essentially, by inducing oxidative stress in the brain [212].

In this review, we summarized our current understanding of the various molecular
mechanisms of neurotoxicity. The available literature suggests that there is a need to focus
on arsenic-induced neurotoxicity mechanisms. However, animal studies raise the prospect
of oxidative stress-mediated mitochondrial dysfunction in inducing neurotoxicity. The
deeper exploration of arsenic-induced oxidative stress and mitochondrial dysfunction may
help to devise therapies for alleviating arsenic-induced neurotoxicity. A detailed investiga-
tion of the epigenetic signatures of arsenic and its impacts on metabolism is needed, as this
has huge capacity to explore biomarkers for disease progression. Additionally, the effect
of cumulative exposures to arsenic and its progression to neurotoxicity has been poorly
studied. Arsenic induced ROS generation and subsequent lessening of cellular antioxidant
defenses can result in disorder of redox equilibrium in tissues. Because of its sulfhydryl
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group binding capacity, arsenic has been shown to alter the activities of various cellular
enzymes, specifically those which play major roles in controlling fatty acid oxidation and
glutathione production. However, more elaborative and decisive research is required to
characterize the molecular pathways that link oxidative stress and epigenetic mechanisms
leading to the transgenerational impacts of arsenic. Although several studies have focused
on these aspects, an in-depth understanding remains elusive.
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