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ABSTRACT: This commentary presents a scientific basis for managing as one chemical
class the thousands of chemicals known as PFAS (per- and polyfluoroalkyl substances). The
class includes perfluoroalkyl acids, perfluoroalkylether acids, and their precursors;
fluoropolymers and perfluoropolyethers; and other PFAS. The basis for the class approach
is presented in relation to their physicochemical, environmental, and toxicological properties.
Specifically, the high persistence, accumulation potential, and/or hazards (known and
potential) of PFAS studied to date warrant treating all PFAS as a single class. Examples are
provided of how some PFAS are being regulated and how some businesses are avoiding all
PFAS in their products and purchasing decisions. We conclude with options for how
governments and industry can apply the class-based approach, emphasizing the importance
of eliminating non-essential uses of PFAS, and further developing safer alternatives and
methods to remove existing PFAS from the environment.

■ INTRODUCTION

When chemicals have similar molecular structures, environ-
mental properties, and/or biological hazards, managing them
as a class can be an effective means of reducing adverse effects
on human and ecological health.1−4 While a class-based
approach to chemical management can pose challenges to the
traditional paradigm of individual chemical risk assessment, the
extreme persistence and potential for harm from thousands of
PFAS (per- and polyfluoroalkyl substances)5,6 demand a more
efficient and effective approach. Examples of cases in which
substances with common chemical characteristics are currently
managed as a class include organophosphate pesticides,
organochlorine pesticides, and organohalogen flame retard-
ants.1,7 Thus, a class-based approach not only is feasible but
also has already been implemented by regulatory agencies
globally.
Here we provide scientific justification for why a class-based

approach is appropriate and necessary for all PFAS, defined as
chemicals with at least one aliphatic perfluorocarbon moiety
(e.g., -CnF2n-).

5,6 We discuss the following major subclasses of
PFAS in detail: perfluoroalkyl acids and perfluoroalkylether
acids (together termed PFAA) and their precursors, fluoropol-
ymers and perfluoropolyethers, and other (primarily less
reactive) PFAS (see Figure 1 for examples). PFAA are
nonpolymer PFAS with at least one perfluorocarbon moiety
(e.g., -CF2-, >CF-) directly linked to an acid functional group.
The most well-known are perfluorooctanesulfonic acid
(PFOS) and perfluorooctanoic acid (PFOA). Many other
PFAS may transform and yield PFAA in the environment and

biota and are thus regarded as precursors to PFAA. Examples
are PFAS derived from fluorotelomers and perfluoroalkane-
sulfonyl fluorides, including so-called side-chain-fluorinated
polymers (i.e., polymers with nonfluorinated backbones and
fluorinated side chains). Fluoropolymers and perfluoropo-
lyethers include polymers with backbones being per- or
polyfluorinated. Other PFAS in the class include primarily
nonpolymeric PFAS with limited chemical reactivity, such as
linear and cyclic perfluoroalkanes, perfluoroalkylethers, and
perfluoroalkyl amines.
PFAS function in many capacities, including as surfactants,

friction reducers, and repellents of water, dirt, and oil. As such,
they are used in a wide variety of consumer products to confer
nonstick (waterproof, greaseproof, and stainproof) and low-
friction properties. Examples of products that contain or are
coated with PFAS include carpets, glass, paper, clothing and
other textiles, plastic articles, cookware, food packaging,
electronics, and personal care products. PFAS are also used
directly or as technical aids (dispersants and emulsifiers) in
many industrial applications, such as in metal coatings,
lubricants for machinery, membranes, and firefighting foams.
PFAS are used in the synthesis of or as adjuvants in pesticides,
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in medical procedures and products, and in many other
applications.8

The most consistent feature within the class of PFAS is that
their perfluorocarbon moieties do not break down, or do so
very slowly under natural conditions, which is why PFAS are
often termed “forever chemicals”.9 Because PFAS are
persistent, they accumulate or concentrate in the environment,
including water, air, sediment, soil, and plants.10 Elevated levels
of PFAS and their widespread presence in environmental
media and drinking water stem from industrial sites that
produce or use PFAS (or have done so in the past), airports,
military bases (fire-training and response areas), landfills,
wastewater treatment plants, and the spreading of PFAS-
contaminated biosolids.11−13 Some PFAS are highly mobile in
either air or water, allowing them to travel long distances from
their source.
Environmental and human exposure to PFAS can occur

throughout the life cycles of these chemicals and products
containing them, including during chemical production,
product manufacturing, distribution, use, disposal, and
recycling. Many PFAS, particularly PFAA, have been detected
globally and are in the bodies of nearly all people living in the
United States (US), Europe, and other countries world-
wide.14,15 Major sources of human exposure to PFAS are from
contaminated food, water, air, and other media such as
consumer products and house dust.16,17 Limited testing of
primarily large public water sources in the US found PFAS in
the water supplies serving an estimated 16.5 million people,

including 6 million with a combined PFOS and PFOA
concentration over the US EPA’s lifetime health advisory of 70
ng/L.11 More recent testing of 25 public water systems in the
US identified PFAS in every one, with an average of nearly 10
different PFAS at a combined concentration near 20 ng/L.18

Such testing is lacking in many other parts of the world,
including many European countries. PFAS are also found in a
variety of foods.19,20 The highest levels are found in fish and
shellfish, but meat, eggs, and milk may also contain PFAS if
animals have consumed contaminated feed or water. Fruits and
vegetables have been shown to contain PFAS taken up from
the soil and water used to grow them.21 Food contact materials
are another source of exposure,22,23 as are consumer products
and house dust.24−28

Exposure to PFAS occurs in complex mixtures of multiple
PFAS, yet at present, fewer than 50 individual PFAS (often
fewer than 10) are commonly measured in environmental
media.29,30 New analytical methods allow for more compre-
hensive screening such as measuring total fluorine or
extractable/adsorbable organofluorine in the environ-
ment,31−33 products,22,23,34,35 dust,27 biota,36 and humans.37

These methods reveal evidence that humans and wildlife are
exposed to more PFAS than previously estimated. For example,
in one study of tap water in five US cities, less than half the
total organic fluorine measured in treated drinking water was
accounted for by the sum of individually identified PFAS,
indicating far more PFAS and other organofluorine com-

Figure 1. Examples of PFAS chemistries. *These PFAS have been less discussed in the public domain, but they meet the definition of PFAS as
recommended in refs 58 and 5. They are primarily PFAS with limited chemical reactivity.
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pounds were present in the water than were identified with
targeted analysis.38

The most well-studied of these substances, PFOA and
PFOS, have been linked to a variety of health problems. They
are termed “long-chain” PFAS, a designation that includes
perfluoroalkylcarboxylic acids (PFCA) with seven or more
fluorinated carbons, perfluoroalkanesulfonic acids (PFSA) with
six or more fluorinated carbons, and their precursors. When
some major manufacturers phased out the production of long-
chain PFAS, most industries turned to structurally similar
replacements, including homologues with fewer fluorinated
carbons (short-chain PFAS) or other less well known PFAS
(e.g., per- and polyfluoroalkylether-based substances).39,40

These replacement PFAS were marketed by producers as
safer alternatives because of their presumed lower toxicity and
lower level of bioaccumulation in human blood.41 However,
several lines of evidence suggest that short-chain PFAS are not
safer alternatives. Research has demonstrated that short-chain
PFAS can be equally environmentally persistent and are even
more mobile in the environment and more difficult to remove
from drinking water than long-chain PFAS.33,42,43 Bioaccumu-
lation of some short-chain PFAS occurs in humans and
animals,44−46 and research in fish suggests they can do so in
excess of the long-chain compounds they aimed to replace.47,48

Short-chain PFAS also can be more effectively taken up by
plants.49−51 Because short-chain PFAS have, to a large extent,
replaced the long-chain PFAS in commerce, the levels of short-
chain PFAS, such as perfluorobutanoic acid (PFBA),
perfluorobutanesulfonic acid (PFBS), and perfluorohexanoic
acid (PFHxA), have increased in environmental
media.37,43,52,53 To date, relatively little is known about
possible health effects of long-term exposure to short-chain
PFAS. However, a growing body of evidence suggests they are
associated with similar adverse toxicological effects as long-
chain PFAS.54−57 The ongoing accumulation of persistent
chemicals that are known or potentially hazardous increases
risks to human and environmental health over an indefinite
period of time.
Fluoropolymers consist of molecular segments (monomers)

that are linked together, with up to hundreds of thousands of
linked monomers in high-molecular weight polymers. While
they are commonly regarded as PFAS,58 fluorochemical
producers now argue that fluoropolymers should be separated
from other PFAS for hazard assessment or regulatory
purposes.59 However, the production of fluoropolymers and
perfluoropolyethers is responsible for extensive environmental
PFAS contamination, including releases of both intentionally
added PFAA processing aids and unintentional PFAS by-
products.13,43,60−65 It is estimated that the vast majority
(∼80%) of PFCA in the environment is from fluoropolymer
manufacture and use.60 Below, we discuss reasons why
fluoropolymers and perfluoropolyethers should be included
in the class approach to managing PFAS.
To date, managing the risk of PFAS has focused primarily on

one chemical at a time, or a small group of PFAS. This
approach has not been effective at controlling widespread
exposure to this large group of chemicals with known and
potential hazards. Below, we present scientific justification for
managing PFAS as a single chemical class, and we suggest ways
in which government and industry can reduce PFAS-related
risks. For example, a class-based approach can be implemented
to more effectively eliminate non-essential uses of PFAS,
develop safer alternatives, and clean up highly contaminated

areas. Ultimately, this will reduce and prevent further
accumulation of these hazardous chemicals in people and the
environment and avoid replacing them with other related and
harmful substances.

■ HEALTH AND ENVIRONMENTAL HAZARDS
With regard to biological activity and the potential for human
health impacts, PFAA, particularly PFOA and PFOS, are the
most well studied PFAS. Data from toxicokinetic studies of
PFAA indicate that they are generally well-absorbed after
ingestion.66 After absorption, they distribute from blood to
organs and tissues that receive high blood flow, such as the
liver, kidney, lung, heart, skin, testis, brain, bone, and
spleen.46,66−70 Because PFAA can occupy sites on multiple
receptors, proteins, and cell interfaces in the body, they can
produce physiological effects across a range of tissues.66

Toxicological (in vitro and in vivo) and epidemiological (in
occupational, highly exposed, and general populations) studies
have identified a broad range of adverse health outcomes
associated with exposure to PFAA in people and animals. In
studies of exposed humans, elevated blood levels of PFAA have
been associated with kidney and testicular cancer, elevated
cholesterol, liver disease, decreased fertility, thyroid problems,
changes in hormone functioning, changes in the immune
system, and adverse developmental effects.54,71,72 Studies of
experimental animals provide biological support for associa-
tions seen in human epidemiological studies, and mechanistic
studies increase confidence in a causal relationship between
PFAA and health effects in humans.72,73 To understand the
potential of every PFAS to adversely affect health would
require testing across the entire range of different biological
end points.
Effects on the immune system are some of the most well

studied health effects of PFAA. Multiple lines of evidence
support PFAA as immunotoxicants and, more specifically,
immunosuppressants at small administered doses in rodents,
and measured serum concentrations in humans. Findings of
suppressed vaccine response in humans and T cell-dependent
antibody response in experimental animals led the US National
Toxicology Program (NTP) to classify PFOA and PFOS as
presumed immune hazards to humans.72 In a recent draft
toxicological profile, the US Agency for Toxic Substances and
Disease Registry (ATSDR) extended this finding to PFHxS
and perfluorodecanoic acid (PFDeA), identifying all four
compounds as suppressants of antibody response in humans.54

These reviews provide strong evidence for immunotoxicity,
especially when seen across multiple compounds, species, and
studies. Notably, suppressed vaccine response in children
indicates the period of early life as an exposure window of
specific concern.74,75 As such, developmental toxicity has been
used as the basis for managing PFAS in drinking water and
food contact materials.76−80 Although the immune system,
particularly during development, appears to be sensitive to
these chemicals, few PFAS have been studied for such effects.
To date, a majority of human epidemiological studies have

focused on long-chain PFAA. In experimental animal models,
however, short-chain PFAA have shown effects similar to those
of long-chain PFAA. For example, exposure to GenX has been
associated with hepatic and renal effects81,82 and suppressed
immune function in mice.83 A study of PFBA in rats indicated
changes to liver weight, serum cholesterol, and thyroid
hormones,84 and a two-generation study of PFBS in rats
demonstrated increased liver weight and pathological changes
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in kidneys.85 Recent reports by NTP found that both PFBS
and PFHxA had numerous adverse effects, including decreased
thyroid hormones in male and female rats.55,56 Effects on
kidneys86 and on reproduction and development87 also have
been reported for PFHxA. Notably, effects observed with other
PFAA may occur at larger administered doses compared to the
long-chain PFAA. However, humans are exposed to multiple
PFAS at once, and there is little research to date on the effects
of combined exposures. To account for such effects, an
additive model for PFAS toxicity is used by the US EPA for
two PFAS and in several US states for five to six PFAS. In
Europe, an additive model is used by the European Food
Safety Authority (EFSA) for four PFAS,88 by the EU drinking
water directive listing 20 PFAS, and by individual European
countries, including Sweden and Denmark.
Some manufacturers have proposed that fluoropolymers

should not be grouped with other PFAS for regulatory
purposes, arguing that they are biologically inert because of
their high molecular weight.59 However, these chemicals can
release low-molecular weight PFAS and other hazardous
substances to the environment throughout their life cycle.
Thus, we argue for the inclusion of fluoropolymers and
perfluoropolyethers in the overall class approach for PFAS,
specifically for the following reasons.
(1) During production of fluoropolymers and perfluoropo-

lyethers, low-molecular weight PFAS used as raw materials,
processing agents, or additives, or generated as intermediates,
can be released into different waste streams (air and water)
and current emission filters do not completely capture them,
nor is there an effective means of disposing of captured
PFAS.13,89−91 For example, it was the production of
fluoropolymers and the associated use and release of PFOA
that led to the widespread contamination of the US mid-Ohio
river valley and its residents.92 In addition, potent greenhouse
gases such as HFC-23 [trifluoromethane (CHF3)] can be
formed during fluoropolymer production, and emissions to the
atmosphere have been reported.93,94

(2) During use, low-molecular weight PFAS may be
released, for example, PFCA in personal care products that
contain PTFE.95

(3) During disposal, PFAA and other hazardous byproducts
may be generated and released, such as when they are
incinerated at an insufficiently high temperature for insufficient
time.96−100 For example, when PTFE is heated above 350−400
°C, it decomposes and releases various gases that cause the so-
called “Teflon fever” in workers.101

Other important considerations are that (1) some
perfluoropolyethers (e.g., Krytox 157FS102) are mixtures of
PFAA with molecular weights of only several thousand grams
per mole and thus potentially biologically active; (2) in the EU
and many other countries, substances registered as polymers
can consist of fewer than 10 monomers, which are likely to be
small and bioavailable molecules;103 (3) fluorine is 19 times
heavier than hydrogen, and therefore high-molecular weight
PFAS can be relatively small molecules, compared to
hydrocarbon molecules of the same weight; and (4)
fluoropolymer microplastics contribute to global plastic and
microplastics debris,104,105 thus adding to ongoing environ-
mental plastic and PFAS pollution.
Similar to fluoropolymers, other PFAS such as perfluor-

oalkanes and perfluoroalkylamines are generally inert,106 but
they can be very potent greenhouse gases, up to 3 orders of
magnitude more potent than CO2.

107−113

In sum, scientific evidence supports the possibility that
adverse effects of PFAS can occur in several bodily systems,
with the developing immune system being particularly
sensitive. Health effects have been demonstrated for several
PFAS, including long- and short-chain PFAA, and chemicals
associated with polymers. However, <1% of all PFAS have
been tested for their hazardous effects. Proceeding with the
approach of testing one chemical at a time will cause
substantial delays in the effort to protect health and the
environment from this large class of potentially hazardous
chemicals.

■ ENVIRONMENTAL EXPOSURE: PERSISTENCE,
ACCUMULATION, AND MOBILITY

An overarching property of all PFAS is that they have highly
stable perfluorocarbon moieties in their molecular structure.
Thus, all PFAS either are extremely persistent in the
environment and biota or partially transform into extremely
persistent PFAS.114−117 Studies have estimated that PFAS such
as perfluoroalkanes have lifetimes in the thousands of
years.113,118 Thus, PFAS will be present in the environment
for centuries or longer, even if environmental releases cease
immediately.
The high persistence of PFAS results in long-term

accumulation in the environment and living organisms,
which increases the risk of harm. A key concern in recent
years is that some replacement PFAS, such as PFBA, PFBS,
and GenX, have been widely detected in surface water and
groundwater.43,65,119 PFAS can concentrate in plants, including
food crops, when grown in contaminated soil or irrigated with
contaminated water.20,120−122 Bioaccumulation occurs through
the food chain, with top predators (e.g., whales, bald eagles,
and humans) having the highest levels.123−127 Most concerning
is that when PFAS accumulate, they can reach concentrations
where hazardous effects are observed in humans and
ecosystems, particularly when the effects of combined exposure
to multiple PFAS are considered.128,129

The high mobility of many PFAS further exacerbates the
concern.130 Many PFAS can travel long distances from their
sources. PFAA, particularly short-chain types, are very water-
soluble, being distributed readily in groundwater, surface
waters, and the oceans.53,131,132 They can be difficult, costly,
and sometimes even impossible to remove from water with
conventional and even advanced treatment pro-
cesses.13,43,133,134 Many other PFAS may be highly mobile in
air, including the volatile perfluoroalkanes, fluorotelomer
alcohols (FTOH), and many other (semi)volatile PFAA
precursors.116

The extreme persistence of the fluorocarbon chain,
combined with the propensity for accumulation and mobility
of many PFAS, has resulted in PFAS being ubiquitous globally,
even in remote regions like the Arctic.36,53,135,136 The
continued use of PFAS will result in increasing concentrations
of PFAS, increasing numbers of exposed organisms,137 and
increasing probabilities of harm. Once adverse effects are
identified, it will take decades, centuries, or even longer to
reverse contamination and reduce the harm to our health and
the environment.

■ MANAGING RISK

Risk management consists of various actions to minimize the
chance of harm. Chemical risk management can be carried out
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by governments and businesses and includes the cessation or
restriction of production and use of the chemicals, and efforts
to clean up contamination.
Regulatory Approaches. Many different regulatory

frameworks are used for managing the risk of exposure to
hazardous chemicals. While traditionally PFAS have been
regulated one chemical at a time, subgroups of PFAS have also
been regulated, with a focus on PFAA and their precur-
sors.79,138−142 An advantage of targeting chemical subgroups is
that the toxicological end points are often assumed to be
similar, which allows for extrapolation from well-studied
chemicals to those less studied. However, assessing only
small subgroups systematically ignores the majority of PFAS
and underestimates the overall risk, particularly when many of
the chemicals are unknown. For example, the EU drinking
water directive, which addresses a relatively large subgroup,
covers only 20 PFAS.143

Governments are increasingly using broader management
approaches to control PFAS exposure, such as targeting all
PFAS within certain use categories. For example, the US states
of Maine and Washington banned all PFAS in food contact
materials144,145 and Denmark banned PFAS from paper and
paperboard food packaging.146,147 South Australia and
Washington state (and other US states) enacted bans on
PFAS in firefighting foam.148,149 California has proposed to
regulate any PFAS used in carpets and rugs.150 In the case of
drinking water, a “PFAS - Total” limit was recently adopted by
the European Commission.143 Regulatory agencies in Europe
and the US are working to advance, validate, and standardize
currently available methods to measure total PFAS in certain
media.
A more comprehensive risk management approach that has

been gaining traction is to limit the uses of hazardous
chemicals to only those considered “essential”, while fostering
development of safer alternatives. In 1987, the Montreal
Protocol defined essentiality (in the case of ozone-depleting
chlorofluorocarbons) as being necessary for health or safety, or
critical for the functioning of society, and without technically
and economically feasible alternatives or substitutes that are
acceptable from the standpoint of environment and health.151

In the 2015 “Madrid Statement”, more than 200 scientists
advocated using a similar approach for PFAS, i.e., limiting the
production and use of the entire class of PFAS, including
polymers, to essential uses.152 A more recent publication
applied the essentiality concept to specific PFAS use categories
and described examples of current PFAS-free alternatives, as
well as uses where alternatives still need to be developed.153 In
2019, several European countries committed to phasing out all
non-essential uses of PFAS by 2030.154 Limiting PFAS to
essential uses would incentivize further development of
alternatives that do not require fluorinated chemicals. Focusing
on pollution prevention is critical because remediation of
PFAS-impacted media, such as polluted groundwater aquifers,
is costly, is energy-intensive, and cannot fully reverse the
damage.
Managing PFAS as a class has additional benefits. It reduces

the likelihood of replacing well-studied hazardous chemicals
with poorly studied but structurally similar PFAS that have the
potential to be similarly hazardous (i.e., “regrettable sub-
stitution”). It can be simpler and less expensive to implement:
for example, for premarket regulation of uses for the entire
class, for setting procurement standards, for testing for
compliance and communicating test results through the supply

chain, and for authorities monitoring the extent of PFAS
contamination of humans, products, food, water, and the
environment. Simpler, cheaper, class-based methods also
typically result in more frequent testing, which improves
compliance and detection of emerging risks. Methods to screen
for fluorine already exist, for example, extractable organic
fluorine methods coupled to combustion ion chromatography
(EOF-CIC) and part ic le- induced γ -ray emiss ion
(PIGE).23,155,156 Hence, focusing on risk management tools
that address PFAS as a class has the potential not only to
prevent pollution by known PFAS but also to prevent
regrettable substitution, to improve the efficiency and
effectiveness of chemical management, and to encourage the
selection of treatment approaches that effectively reduce total
PFAS exposure when remediating PFAS-contaminated sites.

Marketplace Approaches. Compared to governments,
retailers and manufacturers can make more rapid changes to
reduce their use of chemical classes of concern. For instance,
home retailer IKEA committed to a complete phase-out of all
PFAS in its textile products and reported achieving this goal as
of 2016.157 Recently, H&M, Danish COOP, and ChemSec’s
corporate initiative called to end the use of PFAS in products
and the supply chain.158 Numerous factors are encouraging
companies to stop using the entire class of PFAS. Increasing
demand for products containing fewer harmful chemicals is
one driver. For example, demand from retailers for food
contact materials, from textile brands for sportswear, or from
large purchasers and green builders for carpets has resulted in
safer PFAS-free products on the market. Pressure from
environmental groups is another driver. One prominent
campaign contributed to the decision of many apparel
companies to eliminate PFAS in their textile treatments.159

Companies’ values can also play a role, such as when member-
owned retailer COOP Denmark announced a phase-out of all
PFAS-containing cosmetics “on the basis of a precautionary
principle”.160 Similarly, Kaiser Permanente, Levi Strauss & Co.,
and Crate and Barrel are phasing out all PFAS based on the
companies’ environmental and health values.3

New international, national, state, and local regulations
focusing on PFAS in certain products are additional
influences,150 as are threats of future litigation and liability.161

While some companies may find it challenging to eliminate all
PFAS from their products, others view it as important for
mitigating business risks, or as a business opportunity. For
example, treating PFAS as a class can help companies avoid
multiple cycles of reformulations due to regrettable sub-
stitutions. Regulatory action addressing the class of PFAS will
encourage further preventive actions from companies and help
“level the playing field” by reducing the financial disadvantage
of industry front-runners developing safer alternatives while
incentivizing even further innovation toward safer alternatives.

■ OPTIONS MOVING FORWARD
Thousands of PFAS have already been documented across
multiple industries and business sectors, and the list is
growing.5,6 Managing PFAS one by one is neither feasible
nor cost-efficient. More comprehensive solutions are needed,
given that traditional approaches have failed to control
widespread exposures to PFAS and resulted in inadequate
public health protection. For Europe alone, the annual health
costs linked to exposure to just a few PFAS are estimated at
52−84 billion Euros, and environmental remediation costs at
roughly 17 billion Euros.162 Here we suggest class-based
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options to more comprehensively and efficiently reduce PFAS
exposure.
Government policy makers have already begun limiting

PFAS through bans in certain product categories. However, to
more effectively manage PFAS, governments can apply the
essential uses framework. Examples of essential and non-
essential uses of PFAS have already begun to be described.153

To make the criteria fully operational for inclusion in
legislation, a more precise set of decision criteria is needed
to guide the categorization. Such decisions involve both
scientific and ethical considerations and thus require input
from a broad set of scientists, civil society, industry, and
policymakers.
Limiting the entire class of PFAS, including fluorinated

polymers, to essential uses is critical, given that currently,
remediating PFAS, once released to the environment, is at best
extremely costly and, in some cases, impossible.114,163

Governments can take a class-based approach to cleanup
efforts, for example, by prioritizing research and development
funding for treatment and disposal/destruction methods that
are effective for the entire class of PFAS. Such an approach
would ensure that treatment strategies remove all PFAS from
all impacted environmental media (water, air, and soil) and
that treatment residuals (for example, spent activated carbon
and reverse osmosis concentrate) are managed such that the
entire PFAS class is destroyed and its degradation products (or
minerals) captured, so that unknown fluorinated reaction
intermediates and harmful levels of organofluorines and
hydrogen fluoride are not reintroduced into the environment.
A class approach can also be used in developing cleanup
standards, so that responsible industries are held accountable
for remediation of all PFAS, not just a few. Additionally,
governments can hold responsible parties accountable for
exposure and health monitoring in heavily exposed popula-
tions, in order to promote effective and lasting solutions.
Regulatory agencies can also adopt class-based strategies to

reduce exposure and minimize health risk. For example, they
may extrapolate risk from well-understood PFAS when limiting
uses of PFAS in commerce or setting protective cleanup levels.
They can also assess combined exposures to PFAS (e.g., in
drinking water, food, air, consumer products, and waste) as a
basis to set regulatory limits and treatment standards.
Establishing limits to the class rather than doing so on a
chemical-by-chemical basis would result in lower exposure
values that better protect vulnerable populations such as
pregnant women, children, and workers. In addition, systems
that can track historic, current, and future uses of all PFAS, and
releases to the environment, could help to guide and prioritize
monitoring, for instance, for emerging risk detection and
compliance/enforcement testing. The further development,
use, and interlaboratory standardization of analytical methods
to measure total PFAS would complement this effort,
improving the accuracy, speed, and cost of screening for
PFAS in the environment, consumer products, and people.
Collaboration within and across national and international
policy and regulatory bodies to foster class-based strategies
would be beneficial. Such concerted efforts could help prevent
shifting burdens from one geographical location to another and
may evolve into “de facto” industry standards as international
actors attempt to minimize costs of complying with multiple
different regulations.
Solutions are also available in the marketplace. Chemical

manufacturers can move quickly to develop safer non-

fluorinated alternatives for PFAS with current essential uses.
They can also work with product manufacturers and businesses
to rapidly replace all PFAS uses that have technically and
economically feasible alternatives that are acceptable from the
standpoint of environment and health. Chemical and product
manufacturers can be transparent about the use of any PFAS
chemistries in the supply chain and monitor and strictly
control releases of all PFAS into the environment until their
use can be phased out. In addition, PFAS manufacturers can
assist in developing better methods to detect, remove, and
destroy PFAS, although regulatory incentives or pressures may
be needed.
The more we study PFAS, the more we learn about the harm

they can do to our health and the environment. However, it is
not possible to thoroughly assess every individual PFAS, or
combination of PFAS, for their full range of effects in a
reasonable time frame. Without effective risk management
action around the entire class of PFAS, these chemicals will
continue to accumulate and cause harm to human health and
ecosystems for generations to come. As demonstrated above,
managing PFAS as a class is scientifically sound, will provide
business innovation opportunities, and will help protect our
health and environment now and in the future.
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